If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+17X+25=0
a = 1; b = 17; c = +25;
Δ = b2-4ac
Δ = 172-4·1·25
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-3\sqrt{21}}{2*1}=\frac{-17-3\sqrt{21}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+3\sqrt{21}}{2*1}=\frac{-17+3\sqrt{21}}{2} $
| 17+3y=50 | | 2f–5=1 | | 6Xc=53+8+12 | | 192=-8p+8(6p-6) | | (6n+5)/(2n^2=3n) | | 3x+3x=16+8x | | 5z-1=3 | | 7+7x=13+9x | | 6x/5-7=5 | | 8(3x+2)=12x-4 | | X/3+3=x-7 | | 3.6(z=2.6)=54 | | u^2-3u+6=0 | | X/3+4=x-4 | | 2x+4x-8=9 | | 15=-3m+6 | | x2-4x+5=10 | | v/10-35/10=0 | | 35=2u+13 | | 4t^2+12t+5=0 | | v-35/10=0 | | x2+3=9 | | -456=-8(1-8p) | | (2/3x)-(-3/2x)=0 | | -7+7p=1+8p | | 7y-27=2(y+9) | | -2x+26=2 | | -9/5+8/5=-1/2x+3 | | 7y-27=2(y+9 | | 5u-25=2(u-5) | | x2+14x+49=9 | | 0.5x-3=13 |